SLSQP optimizer is a sequential least squares programming algorithm which uses the Han–Powell quasi–Newton method with a BFGS update of the B–matrix and an L1–test function in the step–length algorithm. The optimizer uses a slightly modified version of Lawson and Hanson’s NNLS nonlinear least-squares solver. [Kraft1988] [LICENSE]
Bases: pyOpt.pyOpt_optimizer.Optimizer
SLSQP Optimizer Class - Inherited from Optimizer Abstract Class
SLSQP Optimizer Class Initialization
Keyword arguments:
Documentation last updated: Feb. 16, 2010 - Peter W. Jansen
Run Optimizer (Optimize Routine)
Keyword arguments:
Additional arguments and keyword arguments are passed to the objective function call.
Documentation last updated: February. 2, 2011 - Peter W. Jansen
Name | Type | Default Value | Notes |
---|---|---|---|
ACC | float | 1e-6 | Convergence Accurancy |
MAXIT | int | 50 | Maximum Iterations |
IPRINT | int | 1 | Output Level (neg-None, 0-Screen, 1-File) |
IOUT | int | 6 | Output Unit Number |
IFILE | str | ‘SLSQP.out’ | Output File Name |