This optimizer is a non-dominating sorting genetic algorithm that solves non-convex and non-smooth single and multiobjective optimization problems. The algorithm attempts to perform global optimization, while enforcing constraints using a tournament selection-based strategy. [Deb2002] [LICENSE]
Bases: pyOpt.pyOpt_optimizer.Optimizer
NSGA2 Optimizer Class - Inherited from Optimizer Abstract Class
NSGA2 Optimizer Class Initialization
Keyword arguments:
Documentation last updated: Feb. 16, 2010 - Peter W. Jansen
Run Optimizer (Optimize Routine)
Keyword arguments:
Additional arguments and keyword arguments are passed to the objective function call.
Documentation last updated: February. 16, 2011 - Peter W. Jansen
Name | Type | Default Value | Notes |
---|---|---|---|
PopSize | int | 100 | Population Size (a Multiple of 4) |
maxGen | int | 150 | Maximum Number of Generations |
pCross_real | float | 0.6 | Probability of Crossover of Real Variable (0.6-1.0) |
pMut_real | float | 0.2 | Probablity of Mutation of Real Variables (1/nreal) |
eta_c | float | 10.0 | Distribution Index for Crossover (5-20) must be > 0 |
eta_m | float | 20.0 | Distribution Index for Mutation (5-50) must be > 0 |
pCross_bin | float | 0.0 | Probability of Crossover of Binary Variable (0.6-1.0) |
pMut_real | float | 0.0 | Probability of Mutation of Binary Variables (1/nbits) |
PrintOut | int | 1 | Flag to Turn On Output to files (0-None, 1-Subset, 2-All) |
seed | float | 0.0 | Random Number Seed (0 - Auto-Seed based on time clock) |