NLPQLP is an update of NLPQL for which a non-monotone line search is implemented allowing for increases in the merit function in case of numerical instabilities. The changes made to the original code also enable the ability to perform parallel function evaluations during line search. [Dai2008] and [Schitt2011] [LICENSE]
Bases: pyOpt.pyOpt_optimizer.Optimizer
NLPQLP Optimizer Class - Inherited from Optimizer Abstract Class
NLPQLP Optimizer Class Initialization
Keyword arguments:
Documentation last updated: Feb. 16, 2010 - Peter W. Jansen
Run Optimizer (Optimize Routine)
Keyword arguments:
Additional arguments and keyword arguments are passed to the objective function call.
Documentation last updated: February. 2, 2013 - Peter W. Jansen
Name | Type | Default Value | Notes |
---|---|---|---|
ACC | float | 1e-8 | Convergence Accurancy |
ACCQP | float | 1e-12 | QP Solver Convergence Accurancy |
STPMIN | float | 1e-10 | Minimum Step Length |
MAXFUN | int | 10 | Maximum Number of Function Calls During Line Search |
MAXIT | int | 100 | Maximum Number of Outer Iterations |
RHOB | float | 0.0 | BFGS-Update Matrix Initialization Parameter |
IPRINT | int | 2 | Output Level (0-None, 1-Final, 2-Major, 3-Major/Minor, 4-Full) |
MODE | int | 0 | NLPQL Mode (0 - Normal Execution, 1 to 18 - See Manual) |
IOUT | int | 6 | Output Unit Number| |
LQL | bool | True | QP Solver (True - Quasi-Newton, False - Cholesky) |
IFILE | str | ‘NLPQLP.out’ | Output File Name |